Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev. argent. microbiol ; 55(2): 7-7, jun. 2023. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1449405

RESUMO

Resumen Clostridioides difficile es un patógeno esporulado oportunista responsable de diarrea asociada a antibióticos en humanos. C. difficile produce 2 toxinas principales: TcdAy TcdB, además de la toxina binaria (CDT), también asociada a la virulencia. Este estudio buscó caracterizar el aislamiento ALCD3, involucrado en un episodio de recurrencia de una infección nosocomial. La caracterización molecular mostró que dicho aislamiento pertenece al toxinotipo 0/v y el análisis por MLST demostró un perfil alélico adk:91, atpA:1, dxr:2, glyA: 1, recA:27, sodA: 1 y tpi:1, lo cual corresponde al ST293 (MLST clado 1). Durante el crecimiento, el aislamiento ALCD3 mostró un incremento temprano de la tasa de esporulación y valores máximos de formas termorresistentes luego de 2 días de incubación. Tanto la cinética de esporulación como la producción de formas termorresistentes fueron más rápidas en el aislamiento ALCD3 que en la cepa de referencia VPI 10463. La germinación en presencia del germinante natural taurocolato fue más rápida en el aislamiento ALCD3 que en la cepa VPI 10463, lo que indica que aquel comienza la hidrólisis del córtex antes. También, el co-germinante glicina indujo una rápida liberación de ácido dipicolínico en ALCD3. Estos hallazgos indican que el aislamiento ALCD3 es particularmente eficiente en la esporulación y en la germinación. El presente trabajo representa el primer informe de la circulación de C. difficile ST293 en Argentina. La habilidad del aislamiento ALCD3 para producir toxinas y su alta capacidad de esporulación/germinación son características claves compatibles con un alto potencial de diseminación e inducción de infecciones recurrentes.


Abstract Clostridioides difficile is an opportunistic spore-forming pathogen responsible for antibiotic-associated diarrhea in humans. C. difficile produces two main toxins: TcdA and TcdB as well as a third toxin named binary toxin (CDT) that is also involved in virulence. The present study aimed at characterizing the C. difficile isolate ALCD3 involved in a relapse episode of nosocomial infection. Molecular characterization showed that isolate ALCD3 belongs to tox-inotype 0/v and the MLST analysis demonstrated allelic profile adk:91, atpA:1, dxr:2, glyA: 1, recA:27, sodA: 1 and tpi:1 which corresponds to ST293 (MLST clade: 1). During growth, isolate ALCD3 showed an early increase in the sporulation ratio as well as maximal values of heat resis-tant forms after 2 days of incubation. Both sporulation kinetics and production of heat resistant forms were faster for isolate ALCD3 than for the reference strain VPI 10463. Germination in the presence of the natural germinant taurocholate was faster for isolate ALCD3 than for strain VPI 10463, which indicates that isolate ALCD3 starts cortex hydrolysis earlier than strain VPI 10463. Furthermore, the co-germinant glycine, induces rapid release of dipicolinic acid (DPA) in isolate ALCD3. These findings indicate that isolate ALCD3 is particularly efficient in both sporulation and germination. The present work represents the first report of the circulation of C. difficile ST293 in Argentina. The ability of isolate ALCD3 to produce toxins and its high sporulation/germination capacity are key features compatible with a microorganism with high dissemination potential and the possibility of inducing recurrent infections.

2.
Rev. argent. microbiol ; 55(1): 61-70, mar. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1441186

RESUMO

Abstract Clostridioides difficile is a spore-forming anaerobe microorganism associated to nosocomial diarrhea. Its virulence is mainly associated with TcdA and TcdB toxins, encoded by their respective tcdA and tcdB genes. These genes are part of the pathogenicity locus (PaLoc). Our aim was to characterize relevant C. difficile toxinotypes circulating in the hospital setting. The tcdA and tcdB genes were amplified and digested with different restriction enzymes: EcoRI for tcdA; HincII and AccI for tcdB. In addition, the presence of the cdtB (binary toxin) gene, TcdA and TcdB toxins by dot blot and the cytotoxic effect of culture supernatants on Vero cells, were evaluated. Altogether, these studies revealed three different circulating toxinotypes according to Rupnik's classification: 0, I and VIII, being the latter the most prevalent one. Even though more studies are certainly necessary (e.g. sequencing analysis), it is worth noting that the occurrence of toxinotype I could be related to the introduction of bacteria from different geographical origins. The multivariate analysis conducted on the laboratory values of individuals infected with the most prevalent toxinotype (VIII) showed that the isolates associated with fatal outcomes (GCD13, GCD14 and GCD22) are located in regions of the biplots related to altered laboratory values at admission. In other patients, although laboratory values at admission were not correlated, levels of urea, creatinine and white blood cells were positively correlated after the infection was diagnosed. Our study reveals the circulation of different toxinotypes of C. difficile strains in this public hospital. The variety of toxinotypes can arise from pre-existing microorganisms as well as through the introduction of bacteria from other geographical regions. The existence of microorganisms with different pathogenic potential is relevant for the control, follow-up, and treatment of the infections.


Resumen Clostridioides difficile es un anaerobio esporulado que se asocia con episodios de diarreas hospitalarias. Su virulencia se encuentra vinculada, principalmente, a las toxinas TcdA y TcdB, codificadas por sus respectivos genes, tcdA y tcdB, que son parte de un locus de patogenicidad (PaLoc). Nuestro objetivo fue caracterizar los toxinotipos de C. difficile circulantes en un hospital público. Los genes tcdA y tcdB fueron amplificados y digeridos con diferentes enzimas de restricción: EcoRI para tcdA; HincII y AccI para tcdB. Además, se evaluó la presencia de cdtB (gen de la toxina binaria B) y de las toxinas A y B (por dot blot), así como el efecto citotóxico de sobrenadantes de cultivo sobre células Vero. En conjunto, estos estudios revelaron tres toxinotipos circulantes según la clasificación de Rupnik: 0, I y VIII; el más prevalente fue el último. Aunque son necesarios más estudios (ej., secuenciación), es interesante notar que la presencia del toxinotipo I podría estar relacionada con la introducción de bacterias de diferente origen geográfico. En los pacientes infectados con el toxinotipo VIII, el análisis multivariante de los resultados de laboratorio mostró que los aislamientos asociados a decesos (GCD13, GCD14 y GCD22) estaban situados en regiones de los biplots relacionados con valores de laboratorio alterados al momento de la internación. En los otros pacientes, aunque no se observó correlación entre los valores de laboratorio al momento de la internación y la evolución clínica, los niveles de urea, creatinina y recuento de glóbulos blancos estuvieron correlacionados positivamente entre sí una vez diagnosticada la infección. Nuestro estudio revela la circulación de diferentes toxinotipos de C. difficile en un mismo hospital público. La variedad de toxinotipos puede originarse a partir de microorganismos preexistentes en la región, así como también por la introducción de bacterias provenientes de otras regiones geográficas. La existencia de microorganismos con diferente potencial patogénico es relevante para el control, el seguimiento y el tratamiento de las infecciones.

3.
Rev Argent Microbiol ; 55(2): 150-159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36599754

RESUMO

Clostridioides difficile is an opportunistic spore-forming pathogen responsible for antibiotic-associated diarrhea in humans. C. difficile produces two main toxins: TcdA and TcdB as well as a third toxin named binary toxin (CDT) that is also involved in virulence. The present study aimed at characterizing the C. difficile isolate ALCD3 involved in a relapse episode of nosocomial infection. Molecular characterization showed that isolate ALCD3 belongs to toxinotype 0/v and the MLST analysis demonstrated allelic profile adk:91, atpA:1, dxr:2, glyA: 1, recA:27, sodA: 1 and tpi:1 which corresponds to ST293 (MLST clade: 1). During growth, isolate ALCD3 showed an early increase in the sporulation ratio as well as maximal values of heat resistant forms after 2 days of incubation. Both sporulation kinetics and production of heat resistant forms were faster for isolate ALCD3 than for the reference strain VPI 10463. Germination in the presence of the natural germinant taurocholate was faster for isolate ALCD3 than for strain VPI 10463, which indicates that isolate ALCD3 starts cortex hydrolysis earlier than strain VPI 10463. Furthermore, the co-germinant glycine, induces rapid release of dipicolinic acid (DPA) in isolate ALCD3. These findings indicate that isolate ALCD3 is particularly efficient in both sporulation and germination. The present work represents the first report of the circulation of C. difficile ST293 in Argentina. The ability of isolate ALCD3 to produce toxins and its high sporulation/germination capacity are key features compatible with a microorganism with high dissemination potential and the possibility of inducing recurrent infections.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Clostridioides , Argentina/epidemiologia , Tipagem de Sequências Multilocus , Reinfecção , Proteínas de Bactérias/genética
4.
Rev Argent Microbiol ; 55(1): 73-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35840437

RESUMO

Clostridioides difficile is a spore-forming anaerobe microorganism associated to nosocomial diarrhea. Its virulence is mainly associated with TcdA and TcdB toxins, encoded by their respective tcdA and tcdB genes. These genes are part of the pathogenicity locus (PaLoc). Our aim was to characterize relevant C. difficile toxinotypes circulating in the hospital setting. The tcdA and tcdB genes were amplified and digested with different restriction enzymes: EcoRI for tcdA; HincII and AccI for tcdB. In addition, the presence of the cdtB (binary toxin) gene, TcdA and TcdB toxins by dot blot and the cytotoxic effect of culture supernatants on Vero cells, were evaluated. Altogether, these studies revealed three different circulating toxinotypes according to Rupnik's classification: 0, I and VIII, being the latter the most prevalent one. Even though more studies are certainly necessary (e.g. sequencing analysis), it is worth noting that the occurrence of toxinotype I could be related to the introduction of bacteria from different geographical origins. The multivariate analysis conducted on the laboratory values of individuals infected with the most prevalent toxinotype (VIII) showed that the isolates associated with fatal outcomes (GCD13, GCD14 and GCD22) are located in regions of the biplots related to altered laboratory values at admission. In other patients, although laboratory values at admission were not correlated, levels of urea, creatinine and white blood cells were positively correlated after the infection was diagnosed. Our study reveals the circulation of different toxinotypes of C. difficile strains in this public hospital. The variety of toxinotypes can arise from pre-existing microorganisms as well as through the introduction of bacteria from other geographical regions. The existence of microorganisms with different pathogenic potential is relevant for the control, follow-up, and treatment of the infections.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Animais , Chlorocebus aethiops , Humanos , Toxinas Bacterianas/genética , Toxinas Bacterianas/análise , Enterotoxinas/genética , Clostridioides difficile/genética , Clostridioides , Células Vero , Hospitais Públicos , Proteínas de Bactérias/genética
5.
Food Res Int ; 112: 169-174, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131124

RESUMO

Spray drying was applied for the production of kefir powder. The survival of microorganisms after drying, storage and simulated gastrointestinal (GI) conditions was investigated. Kefir was obtained by fermentation of milk and whey permeate, and was dehydrated directly (traditional kefir) or using different carriers (skim milk, whey permeate and maltodextrin). Low survival (5.5 log and <2 log CFU/g for lactic acid bacteria and yeast respectively) of microorganisms was achieved when kefir was dehydrated without thermoprotectants (carriers). In contrast, survival of the microorganisms was significantly improved in the presence of different carriers. When skim milk (SM) was used as the carrier medium, lactic acid bacteria (LAB) survival was above 9 log CFU/g. In contrast, viability of yeast was dramatically reduced after spray drying in these conditions. When whey permeate was used as the carrier medium, LAB survival was 8 log CFU/g and yeast survival was above 4 log CFU/g. LAB in the kefir powder survived better the simulated GI conditions when spray drying was conducted in SM. LAB in kefir powder sample dehydrated in SM and SM plus maltodextrin remained stable for at least 60 days at 4 °C. Our results demonstrated that spray drying of kefir is a suitable approach to obtain a concentrated kefir-derived product.


Assuntos
Digestão , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Kefir/microbiologia , Lactobacillales/fisiologia , Leveduras/fisiologia , Aerossóis , Animais , Contagem de Colônia Microbiana , Dessecação , Fermentação , Suco Gástrico/química , Viabilidade Microbiana , Leite/metabolismo , Polissacarídeos/metabolismo , Proteínas do Soro do Leite/metabolismo
6.
Int. microbiol ; 20(4): 170-177, abr.-jun. 2017. graf, ilus
Artigo em Inglês | IBECS | ID: ibc-173285

RESUMO

In this study we assessed the interaction of different strains of Bacillus cereus with murine peritoneal macrophages and cultured phagocytic cells (Raw 264.7 cells). Association, internalization, intracellular survival, routing of bacteria to different compartments and expression of MHCII were assessed in cells infected with different strains of B. cereus in vegetative form. Association values (adhering + internalized bacteria) and phagocytosis were higher for strain B10502 than those for strains 2 and M2. However, after 90 min interaction, intracellular survival was higher for strain 2 than for strains M2 and B10502. Acquisition of lysosomal markers by B. cereus containing vacuoles (BcCV), assessed by LAMP1 and Lysotracker labelling occurred shortly after internalization. The highest ratio of LAMP1(+)-BcCV was found for strain M2. This strain was able to survive longer than strain B10502 which routes to LAMP1 containing vacuoles to a lesser extent. In addition, strain M2 stimulated expression of MHCII by infected cells. Confocal analyses 60 or 90 min post-infection showed different percentages of co-localization of bacteria with Lysotracker. Results suggest strain-dependent interaction and intracellular killing of B. cereus by phagocytic cells. These findings could be relevant for the pathogenic potential of Bacillus cereus strains


No disponible


Assuntos
Animais , Ratos , Bacillus cereus/patogenicidade , Macrófagos Peritoneais/microbiologia , Fagocitose , Disfunção de Fagócito Bactericida/microbiologia , Endocitose/fisiologia , Microscopia de Fluorescência/métodos , Citometria de Fluxo/métodos
7.
Colloids Surf B Biointerfaces ; 156: 38-43, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28500977

RESUMO

Liposomes are generally used as delivery systems, as they are capable of encapsulating a wide variety of molecules (i.e. plasmids, recombinant proteins, therapeutic drugs). However, liposomal drug delivery have to fulfill different requirements, such as the effective internalization by the target cells and avoidance of the degradative activity of the intracellular compartments. The use of polymer lipid complexes (PLCs), by including different polymers in the liposome formulation, could improve internalization and intracellular release of drugs. The aim of the present work is to study the mechanisms of cellular uptaking and the intracellular trafficking of PLCs formed with cholesterol-poly(2-(dimethylamino)ethyl methacrylate) CHO-PDMAEMA and lecithin (LC CHO-PD). Calcein-loaded liposomes were used to determine cellular uptake and intracellular localization by flow cytometry and confocal microscopy. Incorporation of CHO-PDMAEMA to lecithin liposomes enhanced the internalization capacity of PLCs. Internalization of PLCs by human epithelial-like cells (HEK-293) diminished at 4°C, suggesting uptake by endocytosis. PLCs showed no co-localization with acidic compartments after internalization. Experiments with endocytosis inhibitors and co-localization of liposomes and albumin, suggested the caveolae endocytic pathway as the most probable route for intracellular trafficking of PLCs. In this work, we demonstrated an efficient uptake of LC CHO-PDs by human epithelial-like cells (HEK-293) through the non-degradative caveolae endocytic pathway. The mode of internalization and the intracellular fate of liposomes under study, suggest a promising use of LC CHO-PDs as drug delivery systems.


Assuntos
Colesterol/metabolismo , Endocitose , Lipossomos , Metacrilatos/metabolismo , Nylons/metabolismo , Células HEK293 , Humanos
8.
World J Microbiol Biotechnol ; 33(3): 48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28176201

RESUMO

Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.


Assuntos
Citrobacter rodentium/fisiologia , Lactobacillus delbrueckii/fisiologia , Macrófagos/microbiologia , Probióticos/farmacologia , Animais , Antígeno B7-2/biossíntese , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Citometria de Fluxo , Lactobacillus/imunologia , Lactobacillus/fisiologia , Lactobacillus delbrueckii/imunologia , Macrófagos/imunologia , Camundongos , Microscopia de Fluorescência , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/imunologia , Nitritos/metabolismo , Fagocitose/imunologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
9.
Int Microbiol ; 20(4): 170-177, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29529328

RESUMO

In this study we assessed the interaction of different strains of Bacillus cereus with murine peritoneal macrophages and cultured phagocytic cells (Raw 264.7 cells). Association, internalization, intracellular survival, routing of bacteria to different compartments and expression of MHCII were assessed in cells infected with different strains of B. cereus in vegetative form. Association values (adhering + internalized bacteria) and phagocytosis were higher for strain B10502 than those for strains 2 and M2. However, after 90 min interaction, intracellular survival was higher for strain 2 than for strains M2 and B10502. Acquisition of lysosomal markers by B. cereus containing vacuoles (BcCV), assessed by LAMP1 and Lysotracker labelling occurred shortly after internalization. The highest ratio of LAMP1(+)-BcCV was found for strain M2. This strain was able to survive longer than strain B10502 which routes to LAMP1 containing vacuoles to a lesser extent. In addition, strain M2 stimulated expression of MHCII by infected cells. Confocal analyses 60 or 90 min post-infection showed different percentages of co-localization of bacteria with Lysotracker. Results suggest strain-dependent interaction and intracellular killing of B. cereus by phagocytic cells. These findings could be relevant for the pathogenic potential of Bacillus cereus strains.


Assuntos
Bacillus cereus , Fagócitos/microbiologia , Animais , Proteína 1 de Membrana Associada ao Lisossomo , Lisossomos/microbiologia , Camundongos , Células RAW 264.7 , Vacúolos/microbiologia
10.
Food Microbiol ; 46: 195-199, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475284

RESUMO

Outbreaks of Bacillus cereus infection/intoxication are not commonly reported because symptoms are often mild, and the disease is self-limiting. However, hypervirulent strains increase health risks. We report a case, which occurred in Argentina, of severe food poisoning illness on a healthy adult woman associated to B. cereus strain MVL2011. The studied strain was highly cytotoxic, showed high ability to detach Caco-2 cells and was positive for the hblA, hblB, and hblC genes of the hbl complex, bceT, entS and ces. As it is considered that B. cereus emetic cluster evolved from a panmictic population of diarrheal strains, B. cereus MVL2011 could constitute an intermediate strain between diarrheal and emetic strains.


Assuntos
Bacillus cereus/isolamento & purificação , Galinhas , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/microbiologia , Carne/microbiologia , Adulto , Animais , Bacillus cereus/genética , Bacillus cereus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CACO-2 , Culinária , Enterotoxinas/genética , Enterotoxinas/metabolismo , Feminino , Humanos , Carne/análise
11.
J Med Microbiol ; 63(Pt 12): 1741-1749, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231625

RESUMO

Bacillus cereus is a spore-forming micro-organism responsible for foodborne illness. In this study, we focus on the host response following intragastric challenge with a pathogenic B. cereus strain (B10502) isolated from a foodborne outbreak. C57BL/6J female mice were infected by gavage with strain B10502. Controls were administered with PBS. Infection leads to significant modification in relevant immune cells in the spleen, Peyer's patches (PP) and mesenteric lymph nodes (MLN). These findings correlated with an increase in the size of PP as compared with uninfected controls. Histological studies showed that B. cereus infection increased the ratio of intestinal goblet cells and induces mononuclear cell infiltrates in spleen at 5 days post-infection. Evaluation of cytokine mRNA expression demonstrated a significant increase in IFN-γ in MLN after 2 days of infection. The present work demonstrates that infection of mice with vegetative B. cereus is self-limited. Our findings determined relevant cell populations that were involved in the control of the pathogen through modification of the ratio and/or activation.


Assuntos
Bacillus cereus/crescimento & desenvolvimento , Modelos Animais de Doenças , Gastroenterite/microbiologia , Gastroenterite/patologia , Animais , Feminino , Perfilação da Expressão Gênica , Interferon gama/biossíntese , Linfonodos/imunologia , Linfonodos/patologia , Camundongos Endogâmicos C57BL , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/patologia , Baço/imunologia , Baço/patologia
12.
Int Microbiol ; 16(1): 27-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151779

RESUMO

To further our understanding of the virulence potential of Bacillus megaterium strains, cell association and invasion assays were conducted in vitro by infecting human enterocytes (Caco-2 cells) with 53 strains of this bacterium isolated from honey. Two series of experiments were performed: (i) necrosis and cell detachment assays with the supernatants of bacterial culture filtrates from 16-h cultures and (ii) adhesion/invasion assays in which cultured enterocytes incubated with bacteria from 3-h cultures were resuspended in Dulbecco's modified Eagle's medium and chloramphenicol. The detachment of Caco-2 cells was evaluated by staining the cells with crystal violet. Necrosis was assessed by fluorescence microscopy of cells labeled with propidium iodide. Association (adhesion plus invasion) was determined by plate counts and invasion in an aminoglycoside protection assay. The results showed that spent culture supernatants detached and necrotized Caco-2 cells in a strain-dependent manner. Seven out of 53 B. megaterium filtered culture supernatants caused complete cell detachment. Suspensions of these same bacterial strains adhered and invaded enterocytes in 2-h infection experiments. To our knowledge, this is the first report on the interaction between B. megaterium and intestinal epithelial Caco-2 cells.


Assuntos
Bacillus megaterium/fisiologia , Enterócitos/microbiologia , Interações Hospedeiro-Patógeno , Bacillus megaterium/patogenicidade , Aderência Bacteriana , Células CACO-2 , Mel/microbiologia , Humanos , Necrose , Especificidade da Espécie , Virulência
13.
J Med Microbiol ; 62(Pt 12): 1815-1822, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24072759

RESUMO

Giardiasis, caused by the protozoan Giardia intestinalis, is one of the most common intestinal diseases worldwide and constitutes an important problem for the public health systems of various countries. Kefir is a probiotic drink obtained by fermenting milk with 'kefir grains', which consist mainly of bacteria and yeasts that coexist in a complex symbiotic association. In this work, we studied the ability of kefir to protect mice from G. intestinalis infection, and characterized the host immune response to this probiotic in the context of the intestinal infection. Six- to 8-week-old C75BL/6 mice were separated into four groups: controls, kefir mice (receiving 1 : 100 dilution of kefir in drinking water for 14 days), Giardia mice (infected orally with 4×10(7) trophozoites of G. intestinalis at day 7) and Giardia-kefir mice (kefir-treated G. intestinalis-infected mice), and killed at 2 or 7 days post-infection. Kefir administration was able to significantly reduce the intensity of Giardia infection at 7 days post-infection. An increase in the percentage of CD4(+) T cells at 2 days post-infection was observed in the Peyer's patches (PP) of mice belonging to the Giardia group compared with the control and kefir groups, while the percentage of CD4(+) T cells in PP in the Giardia-kefir group was similar to that of controls. At 2 days post-infection, a reduction in the percentage of B220-positive major histocompatibility complex class II medium cells in PP was observed in infected mice compared with the other groups. At 7 days post-infection, Giardia-infected mice showed a reduction in RcFcε-positive cells compared with the control group, suggesting a downregulation of the inflammatory response. However, the percentages of RcFcε-positive cells did not differ from controls in the kefir and Giardia-kefir groups. An increase in IgA-positive cells was observed in the lamina propria of the kefir group compared with controls at 2 days post-infection. Interestingly, the diminished number of IgA-positive cells registered in the Giardia group at 7 days post-infection was restored by kefir feeding, although the increase in IgA-positive cells was no longer observed in the kefir group at that time. No significant differences in CXCL10 expression were registered between groups, in concordance with the absence of inflammation in small-intestinal tissue. Interestingly, a slight reduction in CCL20 expression was observed in the Giardia group, suggesting that G. intestinalis might downregulate its expression as a way of evading the inflammatory immune response. On the other hand, a trend towards an increase in TNF-α expression was observed in the kefir group, while the Giardia-kefir group showed a significant increase in TNF-α expression. Moreover, kefir-receiving mice (kefir and Giardia-kefir groups) showed an increase in the expression of IFN-γ, the most relevant Th1 cytokine, at 2 days post-infection. Our results demonstrate that feeding mice with kefir reduces G. intestinalis infection and promotes the activation of different mechanisms of humoral and cellular immunity that are downregulated by parasitic infection, thus contributing to protection.


Assuntos
Produtos Fermentados do Leite/imunologia , Fermentação/imunologia , Giardia lamblia/imunologia , Giardíase/imunologia , Giardíase/prevenção & controle , Leite/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Quimiocinas/imunologia , Quimiocinas/metabolismo , Produtos Fermentados do Leite/metabolismo , Regulação para Baixo/imunologia , Feminino , Genes MHC da Classe II/imunologia , Giardia lamblia/metabolismo , Giardíase/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Interferon gama/imunologia , Interferon gama/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Leite/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
14.
J Food Prot ; 76(5): 820-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23643123

RESUMO

Bacillus cereus interaction with cultured human enterocytes and the signaling pathways responsible for the biological effects of the infection were investigated. Results demonstrate that calcium depletion increases the ability of strains T1 and 2 to invade cells. Bacteria associated in greater extent to undifferentiated enterocytes and extracellular factors from strain 2 increased its own association and invasion. Inhibitors of signaling pathways related to phosphorylated lipids (U73122 and wortmannin) were able to significantly reduce cytoskeleton disruption induced by B. cereus infection. Adhesion of strain T1 decreased in the presence of U73122 and of wortmannin, as well as when those inhibitors were used together. In contrast, invasion values were diminished only by U73122. Results show that different factors are involved in the interaction between B. cereus and cultured human enterocytes. Following infection, disruption of the cytoskeleton could facilitate invasion of the eukaryotic cells.


Assuntos
Bacillus cereus/fisiologia , Aderência Bacteriana/fisiologia , Cálcio/deficiência , Enterócitos/microbiologia , Diferenciação Celular , Células Cultivadas , Microbiologia de Alimentos , Humanos , Transdução de Sinais/fisiologia
15.
J Dairy Res ; 80(3): 263-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23611644

RESUMO

The aim of this study was to evaluate the ability of Bifidobacterium strains to prevent the effects associated with Clostridium difficile infection in a hamster model of enterocolitis. After clindamycin treatment (30 mg/kg), animals were infected intragastrically with C. difficile (5×108 CFU per animal). Seven days prior to antibiotic administration, probiotic treatment was started by administering bacterial suspensions of bifidobacteria in drinking water. Strains CIDCA 531, CIDCA 5310, CIDCA 5316, CIDCA 5320, CIDCA 5323 and CIDCA 5325 were used. Treatment was continued during all the experimental period. Development of diarrhoea, enterocolitis and mortality were evaluated. All the infected animals belonging to the placebo group developed enterocolitis (5/5) and only two dead (2/5) whereas in the group administered with Bifidobacterium bifidum strain CIDCA 5310 the ratio of animals with enterocolitis or dead decreased significantly (1/5 and 0/5 respectively). Biological activity of caecum contents was evaluated in vitro on Vero cells. Animals treated with strain CIDCA 5310 presented lower biological activity than those belonging to the placebo group. The present study shows the potential of selected strains of bifidobacteria to antagonise, in vivo, the virulence of C. difficile.


Assuntos
Bifidobacterium/metabolismo , Clostridioides difficile , Enterocolite Pseudomembranosa/veterinária , Probióticos/uso terapêutico , Animais , Ceco/microbiologia , Ceco/patologia , Chlorocebus aethiops , Cricetinae , Enterocolite Pseudomembranosa/patologia , Enterocolite Pseudomembranosa/prevenção & controle , Feminino , Conteúdo Gastrointestinal/microbiologia , Mesocricetus , Células Vero/efeitos dos fármacos
16.
Int. microbiol ; 16(1): 27-33, mar. 2013. ilus
Artigo em Inglês | IBECS | ID: ibc-114742

RESUMO

To further our understanding of the virulence potential of Bacillus megaterium strains, cell association and invasion assays were conducted in vitro by infecting human enterocytes (Caco-2 cells) with 53 strains of this bacterium isolated from honey. Two series of experiments were performed: (i) necrosis and cell detachment assays with the supernatants of bacterial culture filtrates from 16-h cultures and (ii) adhesion/invasion assays in which cultured enterocytes incubated with bacteria from 3-h cultures were resuspended in Dulbecco’s modified Eagle’s medium and chloramphenicol. The detachment of Caco-2 cells was evaluated by staining the cells with crystal violet. Necrosis was assessed by fluorescence microscopy of cells labeled with propidium iodide. Association (adhesion plus invasion) was determined by plate counts and invasion in an aminoglycoside protection assay. The results showed that spent culture supernatants detached and necrotized Caco-2 cells in a strain-dependent manner. Seven out of 53 B. megaterium filtered culture supernatants caused complete cell detachment. Suspensions of these same bacterial strains adhered and invaded enterocytes in 2-h infection experiments. To our knowledge, this is the first report on the interaction between B. megaterium and intestinal epithelial Caco-2 cells (AU)


No disponible


Assuntos
Humanos , Bacillus megaterium/patogenicidade , Interações Microbianas , Células CACO-2/microbiologia , Mel/microbiologia , Células Epiteliais/microbiologia
17.
Anaerobe ; 18(1): 135-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22126976

RESUMO

In this work, the ability of S-layer proteins from kefir-isolated Lactobacillus kefir strains to antagonize the cytophatic effects of toxins from Clostridium difficile (TcdA and TcdB) on eukaryotic cells in vitro was tested by cell detachment assay. S-layer proteins from eight different L. kefir strains were able to inhibit the damage induced by C. difficile spent culture supernatant to Vero cells. Besides, same protective effect was observed by F-actin network staining. S-layer proteins from aggregating L. kefir strains (CIDCA 83115, 8321, 8345 and 8348) showed a higher inhibitory ability than those belonging to non-aggregating ones (CIDCA 83111, 83113, JCM 5818 and ATCC 8007), suggesting that differences in the structure could be related to the ability to antagonize the effect of clostridial toxins. Similar results were obtained using purified TcdA and TcdB. Protective effect was not affected by proteases inhibitors or heat treatment, thus indicating that proteolytic activity is not involved. Only preincubation with specific anti-S-layer antibodies significantly reduced the inhibitory effect of S-layer proteins, suggesting that this could be attributed to a direct interaction between clostridial toxins and L. kefir S-layer protein. Interestingly, the interaction of toxins with S-layer carrying bacteria was observed by dot blot and fluorescence microscopy with specific anti-TcdA or anti-TcdB antibodies, although L. kefir cells did not show protective effects. We hypothesize that the interaction between clostridial toxins and soluble S-layer molecules is different from the interaction with S-layer on the surface of the bacteria thus leading a different ability to antagonize cytotoxic effect. This is the first report showing the ability of S-layer proteins from kefir lactobacilli to antagonize biological effects of bacterial toxins. These results encourage further research on the role of bacterial surface molecules to the probiotic properties of L. kefir and could contribute to strain selection with potential therapeutic or prophylactic benefits towards CDAD.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Clostridioides difficile/metabolismo , Lactobacillus/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Antibiose , Toxinas Bacterianas/metabolismo , Linhagem Celular , Chlorocebus aethiops , Ligação Proteica
18.
Cell Microbiol ; 13(11): 1683-702, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21790940

RESUMO

Gardia intestinalis, the aetiological agent of giardiasis, one of the most common intestinal diseases in both developing and developed countries, induces a loss of epithelial barrier function and functional injuries of the enterocyte by mechanisms that remain unknown. Three possible mechanisms have been proposed: (i) Giardia may directly alter the epithelial barrier after a close interaction between the trophozoite and polarized intestinal cells, (ii) intestinal functions may be altered by factors secreted by Giardia including an 'enterotoxin', proteinases and lectins, and (iii) based on mouse studies, a mechanism involving the intervention of activated T lymphocytes. We used fully differentiated cultured human intestinal Caco-2/TC7 cells forming a monolayer and expressing several polarized functions of enterocytes of small intestine to investigate the mechanisms by which G. intestinalis induces structural and functional alterations in the host intestinal epithelium. We first report that adhesion of G. intestinalis at the brush border of enterocyte-like cells involves the lipid raft membrane microdomains of the trophozoite. We report an adhesion-dependent disorganization of the apical F-actin cytoskeleton that, in turn, results in a dramatic loss of distribution of functional brush border-associated proteins, including sucrase-isomaltase (SI), dipeptidylpeptidase IV (DPP IV) and fructose transporter, GLUT5, and a decrease in sucrose enzyme activity in G. intestinalis-infected enterocyte-like cells. We observed that the G. intestinalis trophozoite promotes an adhesion-dependent decrease in transepithelial electrical resistance (TER) accompanied by a rearrangement of functional tight junction (TJ)-associated occludin, and delocalization of claudin-1. Finally, we found that whereas the occludin rearrangement induced by G. intestinalis was related to apical F-actin disorganization, the delocalization of claudin-1 was not.


Assuntos
Actinas/metabolismo , Adesão Celular , Enterócitos/parasitologia , Giardia lamblia/patogenicidade , Interações Hospedeiro-Patógeno , Microdomínios da Membrana/metabolismo , Transporte Biológico , Linhagem Celular , Humanos , Proteínas de Membrana/metabolismo , Junções Íntimas/fisiologia , Trofozoítos/fisiologia
19.
J Agric Food Chem ; 59(10): 5299-304, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21504180

RESUMO

The aim of the present study was to evaluate the effect of the oral administration of kefiran on the balance of immune cells in a murine model. Six week old BALB/c mice were treated with kefiran (300 mg/L) for 0, 2 and 7 days. Kefiran treatment increased the number of IgA+ cells in lamina propria after 2 and 7 days. Percentage of B220+/MHCII(high) cells in mesenteric lymph nodes (2 days) and Peyer's patches (7 days) was higher compared to untreated control mice. An increase of macrophages (F4/80+ cells) was observed in lamina propria and peritoneal cavity (2 and 7 days). In contrast, at day 7, macrophage population decreased in Peyer's patches. These results show the ability of kefiran to modify the balance of immune cells in intestinal mucosa. This property could be highly relevant for the comprehension of the probiotic effect attributed to kefir.


Assuntos
Sistema Imunitário/citologia , Sistema Imunitário/efeitos dos fármacos , Polissacarídeos/administração & dosagem , Animais , Contagem de Células , Imunoglobulina A/análise , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/efeitos dos fármacos
20.
Proc Nutr Soc ; 69(3): 407-15, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20633308

RESUMO

Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.


Assuntos
Translocação Bacteriana , Aleitamento Materno , Células Dendríticas/fisiologia , Sistema Imunitário/crescimento & desenvolvimento , Recém-Nascido , Mucosa Intestinal/microbiologia , Leite Humano/imunologia , Adulto , Animais , Bactérias/genética , Sangue/microbiologia , Movimento Celular , Feminino , Humanos , Sistema Imunitário/microbiologia , Mucosa Intestinal/imunologia , Lactação/fisiologia , Leucócitos Mononucleares/microbiologia , Linfa/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Leite Humano/microbiologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...